VOSA: A short introduction.

SEDs in the Virtual Observatory

Miriam Cortés Contreras

Enrique Solano, Carlos Rodrigo

Astronomy ESFRI & Research Infrastructure Cluster
ASTERICS - 653477

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Building SEDs: Difficulties

 Discovery of information: Observational photometry and theoretical models.

Building SEDs: Difficulties

Data Manipulation: From magnitudes to fluxes

Building SEDs: Difficulties

Data Manipulation: From theoretical spectra to synthetic photometry

VOSA to the rescue

http://svo2.cab.inta-csic.es/theory/vosa/

Available since 2008.

> 1500 users.

> 4.700.000 objects.

> 100 refereed papers.

Science case

THE ASTRONOMICAL JOURNAL

Accurate Empirical Radii and Masses of Planets and Their Host Stars with *Gaia* Parallaxes

Keivan G. Stassun^{1,2} (D), Karen A. Collins^{1,2} (D), and B. Scott Gaudi^{3,4}

Published 2017 March 2 • © 2017. The American Astronomical Society. All rights reserved.

The Astronomical Journal, Volume 153, Number 3

Science case

Masses and radii of planets are necessary to:

- Shed light on inflated hot-Jupiters.
 - 0.2-2.1M_{lup}. Radii larger than predicted by models.
 - Internal heating.
 - \rightarrow Planet radius as a function of irradiation, age, magnetic fields, winds,...

$$\Delta \mathbf{F} = \left(\frac{R_{planet}}{R_{star}}\right)^2$$

$$\frac{R_{planet}}{R_{star}}$$

$$M_p = \frac{K_{RV}\sqrt{1 - e^2}}{\sin i} \left(\frac{P}{2\pi G}\right)^{1/3} M_{\star}^{2/3}$$

Science case

- Empirical determination (model independent) of the radii and masses of stars hosting planets.
- SED fitting \rightarrow F_{bol} and T_{eff}
- L = $4\pi D^2 F_{bol}$ (D from Gaia-DR2 parallaxes)
- R=sqrt($L/(4\pi\sigma T_{eff}^{4})$)
- $g = G M / R^2$