

The Virtual Observatory in action: New science, new technology, and next generation facilities IAU XXVI General Assembly Special Session 3

http://www.ivoa.net/pub/VOScienceIAUPrague/programme/index.html

Enrique Solano, LAEFF / SVO

The role of Science

VO is driven by science and it will become a science driver.

Although technology enabled, the Virtual Observatory must not be seen as a technological project only. Its final goal is to produce better, new and more efficient science.

Showing the science community the potential benefits of VO was a major and early task in the VO projects (NVO, AstroGrid, AVO,...).

Creation of Scientific WGs to provide advice to the project.

Elaboration of lists of VO use cases with a clear definition of the science requirements.

The AVO Scientific Demonstrations

• Annual scientific demonstrations based on more and more complex demonstrators.

J.Bank03 AVO First light

• Multi-waveband analysis of HDF(N)

Garching04 AVO 1st Science

Obscured quasars
Star-Forming regions in the Milky Way. ESAC05 Final Demo.

AGB-PN transition
Star formation in galaxies.

• and the tool

The VO factory. VO in ADS

#1 : "Virtual Observatory" in abstract from Jan 2000 to
Sep 2006. All sources.
#2: "Virtual Observatory" in abstract from Jan 2000 to
Sep 2006. Refereed publications.
#3: VO-Science refereed publications.

VO Science

Padovani et al (2004) demonstrates that VO was mature enough to produce cutting edge science results. First refereed astronomical paper enabled via end- to end use of VO tools and systems.

A&A 424, 545–559 (2004) DOI: 10.1051/0004-6361:20041153 © ESO 2004 Astronomy Astrophysics

Discovery of optically faint obscured quasars with Virtual Observatory tools

P. Padovani¹, M. G. Allen², P. Rosati³, and N. A. Walton⁴

Discovering type 2 quasars

• Seyfert 2's high-power counterparts. Characterized by narrow lines and hard X-ray emission (Lx > 1e44 erg/s).

- Data: X-ray catalogue for the two GOODS fields (Alexander et al. 2003)
- Filtering: HR ≥ -0.2 for absorbed sources 294 found HR=(H-S) / (H+S); H = (2.0 - 8.0 keV), S = (0.5 - 2.0 keV)
- Cross-matching with the GOODS ACS catalogues to get the optical counterparts 168 matches.
- Data manipulation: Log L (2-10) = log f(2 10 keV) / f(R) + 43.05 (Fiore03)
- Results:
- 31 new QSOs 2 (only 9 previously known). QSOs-2 are heavily reddened falling through the "standard" (optical) selection methods.
- 3 mag. fainter than before New region of redshift-power space.

Data mining and interoperability in action: classification of ROSAT sources

- Find counterparts to ROSAT X-ray sources in optical, IR, radio.
- Train a classifier to use multi- λ information to determine type of objects.
- Classify the sources in ROSAT catalogues in six class categories: stars, WD, X-ray binaries, galaxies, AGNs, and clusters of galaxies.

A&A 447, 89–95 (2006) DOI: 10.1051/0004-6361:20053142 © ESO 2006 Astronomy Astrophysics

Luminous AGB stars in nearby galaxies

A study using virtual observatory tools*

P. Tsalmantza¹, E. Kontizas², L. Cambrésy³, F. Genova³, A. Dapergolas², and M. Kontizas¹

¹ Department of Astrophysics Astronomy & Mechanics, Faculty of Physics, University of Athens, 15783 Athens, Greece e-mail: vivitsal@phys.uoa.gr

² Institute for Astronomy and Astrophysics, National Observatory of Athens, PO Box 20048, 11810 Athens, Greece

³ Observatoire Astronomique de Strasbourg, 67000 Strasbourg, France

Received 28 March 2005 / Accepted 20 September 2005

- Search of massive carbon stars (dust enshrouded, not detectable in the optical) making use of 2MASS and appropriate filtering criteria.
- Complements the existing AGB catalogues (most of them in the optical domain).

Are active regions that emerge near existing Active Regions more flare productive than those that emerge isolated?

Solar Active Region emergence and flare productivity

S Dalla⁽¹⁾, L Fletcher⁽²⁾ and NA Walton⁽³⁾

⁽¹⁾School of Physics & Astronomy, Univ of Manchester ⁽²⁾Dept of Physics & Astronomy, Univ of Glasgow ⁽³⁾Institute of Astronomy, Univ of Cambridge

Three steps:

Identification of new Active Regions

• Study the location of emergence with respect to preexisting regions.

Sp	National Weather Service Space Environment Center						
Site Search SEC SEC Home Page	Map New Top News of the Day: No G shutdown on September 1 Current	s Organ DES 12 SXI images are avai 9, 2006 t Space Weath	ization lable since the tempora	ny instrument	Search	Search	
Current Conditions Alerts:Warnings Space Weather Now Today's Space Wx Data and Products Alerts & Forecasts Reports/Summaries Space Wx Models Solar/Geo. Indices	GOES Solar X-ray Image	er NOA Range ' NOAA Scale Geomagnetic Storms	- Popular Pages A Scales Activity 1 (minor) to 5 (extreme) Past 24 hours none	Current none			
Measurements Support Services About SEC Staff Email Products Space Wx Week Education/Dutreach Customer Services	not available Satellite Enviror	Solar Radiation Storms Radio Blackouts	none none GOES Solar X-ray tray Flux (5 minute dots) 1	none none Flux			
Contact Us SEC Contacts Webmaster Feedback		adv. (10 a) (10	In any all				

			SAM	PLE		
Produ	st: 112	6SRS.t:	ĸt			
:Issue	ed: 200	4 Nov 3	26 0040 UT	ГС		
# Prej	pared j	ointly	by the U.	.S. Dep	t. of	Commerce, NOAA,
# Spac	se Envi	ronmen	t Center a	and the	u.s.	Air Force.
#						
Joint	USAF/N	IOAA So	lar Region	n Summa	ry	
SRS N	umber 3	31 Iss	ued at 003	BOZ on	26 No	v 2004
Report	compi	led fro	om data re	eceived	at S	WO on 25 Nov
I. Re	gions	with S	unspots.	Locati	ons V	alid at 25/2400Z
Nmbr 1	Locatio	on Lo	Area Z	LL	NN Ma	lg Type
0704 I	V13W17	145	0070 Dao	06	06 Be	ta
0705 \$	304W95	223	0060 Cao	07	03 Be	ta
0706 \$	308E56	072	0070 Dao	07	06 Be	ta
0707 \$	315E57	071	0110 Cao	06	06 Be	ta
TA. H-	-alpha	Plages	without S	Spots.	Loca	tions Valid at 25/2400Z N
	Locati	on Lo				
Nmbr						
Nmbr 0703	N13W44	ł 172				
Nmbr 0703 II. Re	N13W44 gions	l 172 Due to	Return 20	5 Nov t	o 28	Nov
Nmbr 0703 II. Re Nmbr J	N13W44 egions Jat	ł 172 Due to Lo	Return 20	5 Nov t	o 28	Nov

Three steps:

Identification of new Active Regions

• Study the location of emergence with respect to preexisting regions.

VO compliance by EGSO.

Information Socie

Three steps:

• Identification of new Active Regions

• Study the location of emergence with respect to preexisting regions.

(4.7:1)

We find a strong asymmetry in the location of emergence of these new regions as viewed from Earth. Eg: 825 regions in bin E60-E40, 177 in W40-W60

Three steps:

- Identification of new Active Regions.
- Study the location of emergence with respect to preexisting regions (paired vs isolated ARs)
- Query catalogues of flares to establish flare productivity. GOES soft-X ray flare catalogue.

####	Prep Plea	are ase s	l by th send co	e U.S. De mments an Last 30 D	ept. of (nd sugges)ays Dai.	Commerce stions t ly Solar	, NOAA, o SEC.W Data	Space ebmaste	Env er@n	iro .oaa	nme .go	nt v	Cen	ter	
#					Sunspot	S	tanford	GOES1							
#			Radio	SESC	Area		Solar	X-Pay			- F	lar	es		ನನನ
#			Flux	Sunspot	10E-6	New	Mean	Figd	X	-Ra	У		Op	tic	al
#	Date	2	10.7c	m Number	Hemis.	Regions	Field	Flux	С	М	Х	S	1	2	3
20	06 09	9 23	70	13	20	 0	-999	A0.0	0	0	0	1	0	0	0
20	06 09	9 24	70	13	30	0	-999	A0.0	0	Ο	Ο	1	Ο	0	0
20	06 09	9 25	70	11	10	0	-999	AO.O	0	0	Ο	1	0	0	0
20	06 09	9 26	71	13	30	1	-999	10.0	Ο	Ο	0	0	Ο	0	0
20	06 09	9 27	72	11	20	Ο	-999	A3	Ο	Ο	0	0	Ο	0	0
20	06 09	9 28	73	36	120	3	-999	A1.1	0	0	0	0	0	0	0

VO compliance by EGSO

Productivity of paired/isolated

	Paired	Isolated
Regions with flares (%)	16.2±2.0	14.3 ±1.2
Mean flare number	0.35 ±0.03	0.30 ±0.02

No clear indication that being 'paired' makes a region or its companion more flare productive.

Newly emerged regions have low flare productivity.

Magnetic complexity of new/old regions

Subset	number of ARs	α (%)	β (%)	$\beta\gamma~(\%)$	$\beta\delta~(\%)$	$\beta\gamma\delta$ (%)
All	2880	10	73	11	0.8	5.2
old regions	1003	8	61	18	1.6	11
NE regions	1496	10	82	6	0.3	1.7
companions (α =12)	468	6	72	13	0.6	7

Figure 3.4. Mount Wilson Magnetic Classification System.

Newly emerged region are considerably simpler than older regions.

In agreement with Sammis et al. (2000) who pointed out a strong dependence of flare productivity and magnetic complexity.

First step to Massive physical and dynamical characterization of asteroids

W. Thuillot¹, <u>J. Berthier</u>¹, A. Sarkissian², A. Mickaelian³, L. Sargsyan³, J. Iglesias¹, V. Lainey¹, M. Birlan¹, G. Simon⁴

 ¹ Institut de mécanique céleste et de calcul des éphémérides (IMCCE), Paris Observatory, France
 ² Service d'Aéronomie, Institut Pierre Simon Laplace, France
 ³ Byurakan Astrophysical Observatory, Armenia
 ⁴ GEPI, Paris Observatory, France

Asteroids in DENIS

IR classification of asteroids may contribute significantly to the mineralogical knowledge of their surface.

Goal (I): Performing of a complete study of the solar system bodies in DENIS.

Procedure:

Identification of asteroids in DENIS plates using SKYBOT Color confirmation: (previous work by Baudrand 2001,2004)

> 0 < (V-I) < 1.50.5 < (V-J) < 21 < (V-K) < 3

Goal (II): Spectroscopic characterization of these objects using FBS.

Asteroids in DENIS/FBS

1965 – 1980 Byurakan Observatory (Armenia) 1m Schmidt telescope + objective prism Sky coverage: DEC>-15°, all RA (except the Milky Way) Total area: 17 000 deg² 20 000 000 objects (spectra) Limiting magnitude: 17.5 in V Spectral range: 3400 – 6900 A, resol. 50A VO-compliant (ArVO)

Asteroids in DENIS/FBS

Large surveys and determination of interstellar extinction

Oleg Malkov (Institute of Astronomy, Moscow) Erken Karimov (Moscow State University)

Prague, IAU GA XXVI, SPS3, Aug 17-22, 2006

The method

• Three-dimensional models (Av = f [l,b,d]) on photometric stellar data.

 Assumption: Uniform interstellar extinction law (Rieke & Lebofsky 1985)

λBVRIJHKE(B-λ)/ E(B-V) =
$$k_\lambda$$
0.1.1.782.603.223.553.74

• For every λ available in photometric survey: calculate (B- λ) E(B- λ) = (B- λ) - (B- λ)₀ Intrinsi E(B-V)_{λ} = E(B- λ), k_{λ} Tabulat

Intrinsic color. Depends on sp. typ. Tabulated. Extinction law

• Assuming that a star satisfies the interstellar extinction law, we can expect E(B-V) λ be identical for every λ . • Mean E(B-V) λ calculation, E = n⁻¹ Σ E(B-V) $_{\lambda}$ • Minimization of Δ E² = Σ (E(B-V) $_{\lambda}$ - E)² $A_{V} = 3.1 \cdot E(B-V)$ $\log r = 0.2 \cdot (B - M_{B} + 5 - A_{B})$

Pros and cons

Advantages:

Densification

- 2' test area: I=323, b=+6 (Lupus)
 - B(USNO-B), J(DENIS, 2MASS), H(2MASS),
 - K(DENIS, 2MASS), available for 36 objects.
 - 0.0007 objects (on average) used in previous works.

Depth Arenou: < 2 kpc. Malkov: < 10 kpc

Other (including future) multi-wavelength surveys like DPOSS (3 bands), SDSS (5 bands), UKIDSS (3 bands), ... can be incorporated using VO techniques.

Limitations:

Uniform interstellar extinction law. Local variations of the interstellar extinction are not taken into account.

Variable stars (eclipsing binaries, pulsating stars,...) must be discarded.

Wozilla Firefox			
Archivo Editar Ver Ir Marcadores Herramientas Ayuda			
👍 🔹 🛶 - 🎯 🕥 😭 🗋 http://localhost:1213/ovu/MV5O.aspx		🔽 🖸 Ir	
M Gmail - Imagen/Logo del MVSO	¥50.aspx		
Mexican Virtual Solar Observatory Numerical Simulations Portal / 2	ZEUS-3D		
		UNAM IA-UNAM	DGSCA
Coronal Mass Ejection (CME)			
tty >		T	utorial
<u>Navigation</u>	Resolution 128 × 128 💉		
Solar wind (2D)			
Density	r <u>1990</u>		
Velocity	r [400		
Temperature	45000		
Initial conditions for the CN	Es		
Density 1	[1080	Density 2 1080	
Velocity 1	600	Velocity 2 1600	
Temperature 1	90000	Temperature 2 90000	
InjectionTime 1	4	InjectionTime 2 4	
Time parameters			
Inter-CIME delay	r [10		
		Run	
Mexican Virtu	ial Solar Observatory - <u>UNAM</u> - 2006		
Listo			

Theory in the Virtual Observatory

Cannibal Coronal Mass Ejections

- Fast-moving solar eruptions overtaking their slower-moving kin.
- These collisions change the speed of the eruption, which is important for space weather prediction.
- 21 cannibalistic ejections have been identified since April 1997.