
Gaia Data Queries with TAP/ADQL and TOPCAT

Markus Demleitner & Hendrik Heinl

Adapted by the SVO (Dic 2020)

svo-support@cab.inta-csic.es

TAP: T(able) A(ccess) P(rotocol)

ADQL: A(stronomical) D(ata) Q(uery) L(anguage)

VO protocols like ConeSearch, SSAP or SIAP only allow simple queries, mainly by position and
search radius. The table access protocol (TAP1) defines a service protocol to make more
complex queries to astronomical catalogs as well as general database tables. TAP uses ADQL
(Astronomical Data Query Languaje) to build expressions of relational algebra.

The basic syntax is composed by a SELECT command to select the number of rows and
columns wanted for the output and a FROM command to indicate the table we want to ask for.

In this tutorial we will see a few introductory examples of queries with TAP/ADQL.

Note that all names in ADQL (column names, table names, commands, etc) are case-
insensitive.

● Launch TOPCAT

● In the menu on top, go to VO → Table Access Protocol (TAP) query. A new window (“Table
Access Protocol (TAP) Query”) will pop up. If you wish, click the pin icon in the upper left
corner of this window to keep i t open even while the query is executing (background
must be blue).

1 http://www.ivoa.net/documents/TAP/

mailto:svo-support@cab.inta-csic.es

● Enter Gaia in the Keywords box . Click Find Services.

● Click on ARI - Gaia. The corresponding TAP URL will appear in the TAP URL box (at the
bottom of the window). Hit Use Service. You will be addressed to the Use service tab.

● In the tab Use service you will see all the tables available from the Gaia database. Select
gaiadr2.gaia_source on the left panel. If you click on the Columns tab to the r ight, you
will get information of all the columns available in this particular table.

◦ SELECT / TOP

▪ In the bottom box enter:

SELECT TOP 5 * FROM gaiadr2.gaia_source

▪ Hit Run Query.

The TOP command followed by an integer is used to indicate how many rows we want
returned.

The “*” indicates that we want returned all columns in the table that we specify before
the FROM command.

Once the query is finished, a new table should have been created in TOPCAT with
five rows and 94 columns.

Note that the “TOP 5” does not means the “first 5” rows of the Gaia catalogue. The
Gaia archive is dynamic and the “TOP 5” would depends on the previous queries
done in the archive. So, you may have different result each time you run this ADQL
query.

◦ SELECT / ORDER BY

▪ In the bottom box enter:

SELECT TOP 5 source_id, phot_g_mean_mag FROM gaiadr2.gaia_source ORDER
BY phot_g_mean_mag

▪ Hit Run Query.

Note that we are replacing the “*” in the previous example with the name of the two
columns we want to be returned. We use one of those columns to indicate how we want
the output to be ordered by using ORDER BY.

You will get the five brightest stars in the Gaia DR2 source catalogue. In this case the
output should be always the same.

▪ If you now enter:

SELECT TOP 5 source_id,phot_g_mean_mag FROM gaiadr2.gaia_source
ORDER BY phot_g_mean_mag DESC

▪ and click Run Q uery you will get the five faintest stars in the Gaia DR2 source
catalogue.

By using DESC at the end of the query, we are ordering the apparent magnitude in
descending order before making the selection of the first five entries.

◦ SELECT / WHERE

▪ In the bottom box enter:

SELECT source_id, parallax, parallax_error FROM gaiadr2.gaia_source
WHERE parallax>100 AND parallax_error/parallax<0.1 ORDER BY parallax DESC

▪ Hit Run Query.

This query returns all objects (note that no TOP command is used here) that satisfy
the imposed criteria with the WHERE command: to be at a shorten distance than 10
pc and with good parallax determinations, defined as relative error lower than 10%
(parallax_error/parallax<0.1). We ordered the selection by descending parallax (i.e.,
closest objects come first) using DESC.

The output will be a table with 1722 objects and the three columns indicated after the
SELECT command.

◦ SELECT / COUNT

▪ Use COUNT(*) to figure out how many rows there are in a table:

SELECT COUNT(*) FROM gaiadr1.tgas_source

▪ Hit Run Query.

The output will be a new table in TOPCAT with one row indicating the number of
entries in the TGAS catalogue: 2057050.

◦ CREATING NEW COLUMNS

▪ In the bottom box enter:

SELECT TOP 5 source_id, pmra, pmdec, sqrt(power(pmra,2)+power(pmdec,2))
AS pm_tot
FROM gaiadr1.tgas_source ORDER BY pm_tot DESC

▪ Hit Run Query.

You will obtain a new table in TOPCAT with five rows (indicated with the TOP
command) and the specified four columns, one of which is an algebraic operation and
that we have named "pm_tot" using AS.

They are the 5 sources with the highest proper motion in the TGAS catalogue.

◦ GROUPING

For histogram-like functionality, you can compute factor sets, i.e., subsets that have
identical values for one or more columns, and you can compute aggregate functions
for them.

▪ In the bottom box enter:

SELECT COUNT(*) AS n, ROUND(phot_g_mean_mag) AS Gmag_bin,
AVG(parallax) as mean_plx
FROM gaiadr1.tgas_source GROUP BY Gmag_bin ORDER BY Gmag_bin

▪ Hit Run Query.

Here we use the GROUP BY command to group all objects with the same G
magnitude taken as an integer by running ROUND. For each bin, we have calculated
the average parallax with AVG and required it as an ouptut, together with the number
of sources in that bin.

A new table will be created in TOPCAT with 16 rows and the following information:

As expected, brighter
stars tend to have
larger parallaxes.

◦ JOINING:

So far, we have worked with a single table but we can join more tables as in the
following example.

▪ In the bottom box enter:

SELECT TOP 10 h1.ra, h1.dec, t1.source_id FROM gaiadr2.gaia_source AS h1
JOIN gaiadr2.tmass_best_neighbour AS t1 USING(source_id)

▪ Hit Run Query.

We are taking the first 10 rows (TOP 10) in the table resulting from the match between
tables.

Note that we are renaming the first table (gaiadr2.gaia_source) to “h1” and the second
table (gaiadr2.tmass_best_neighbour) to “t1” with the AS command. Because of this,
the columns ra, dec and source_id from the first table that we want to obtain in the
output are preceded by the new name given to it (e.g., “h1.ra”).

The JOIN command performs a cross-match between the two tables. To indicate the
column that we want to use as a reference for the cross-match, we use the USING
command.

All the above is just a very basic introduction to TA P / ADQL. If you want to know more,
the following URLs can be useful:

• http://docs.g-vo.org/adql-gaia/html/twoup.pdf

• http://tapvizier.u-strasbg.fr/adql/help.html

• thttp://docs.g-vo.org/adql/html/

More examples of queries can be found by clicking “Examples” in the “Table Access
Protocol (TAP) Query” window of TOPCAT. Specially interesting are the ones of Gaia, that are
available in the “Service-Provided” menu.

Moreover, the brown dwarf case made using ADQL can be found at the school web page.

http://docs.g-vo.org/adql/html/
http://tapvizier.u-strasbg.fr/adql/help.html
http://docs.g-vo.org/adql-gaia/html/twoup.pdf

	SELECT / TOP
	SELECT / COUNT
	GROUPING
	JOINING:
	So far, we have worked with a single table but we can join more tables as in the following example.
	In the bottom box enter:
	SELECT TOP 10 h1.ra, h1.dec, t1.source_id FROM gaiadr2.gaia_source AS h1 JOIN gaiadr2.tmass_best_neighbour AS t1 USING(source_id)
	Hit Run Query.
	We are taking the first 10 rows (TOP 10) in the table resulting from the match between tables.
	Note that we are renaming the first table (gaiadr2.gaia_source) to “h1” and the second table (gaiadr2.tmass_best_neighbour) to “t1” with the AS command. Because of this, the columns ra, dec and source_id from the first table that we want to obtain in the output are preceded by the new name given to it (e.g., “h1.ra”).
	The JOIN command performs a cross-match between the two tables. To indicate the column that we want to use as a reference for the cross-match, we use the USING command.

