

Carlos Rodrigo Blanco¹ Enrique Solano¹

¹LAEFF-INTA, Aptdo Correos 78, 28691 Villanueva de la Cañada, Madrid

Reunión científica de la Sociedad Española de Astronomía Santander, 7-11 Julio, 2008

(日)

Outline

Introduction

- What is the VO?
- Theoretical Models not in VO
- Theoretical Models in the VO
- A working approach
 - Using TSAP
 - Isochrones
 - VOSA: Science using TSAP/S3

Building a VO server

S3wizard

.≣⇒

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

What is the VO?

• An international effort in astrophysics for:

Standardization

 common data formats (VOTable, Data Models,...) (how the data are represented, written...)

Interoperability

 common protocols (SIAP, SSAP, TSAP...) (how to make questions and how to answer them)

イロト イポト イヨト イヨト

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical Models not in VO

Theoretical models available in internet:

- as a collection of files
- search form \rightarrow file
- ASCII or FITS files
- special data format for each model

ヘロト 人間 ト ヘヨト ヘヨト

æ

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical Models not in VO

イロト イ押ト イヨト イヨトー

æ

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical Models not in VO

abase. vide parar	meter values for search in Spectra	Lib 1Å database:		1				
	Temperature: 2	3750 т к		8 T F F				
	Rotation velocity: 2	-Select- 💌 kr	n s-1					
	Metallicity: 2	[M/H]>=0	<u> </u>		1			
	Gravity: 2	0.5	For the given parameters 1 FITS file has been found :					
	a-Enhancement [a/Fe]: 7	0.4	Temperature (K)	3750				
	Micro-turbulence: ?	2 • kr	Rotation Velocity (km s-1)	5				
		_	Metallicity	+0				
	Spectrum type: ?	Fluxed spectru	Gravity (log g)	1.5				
		1	a-Enhancement	0.0				
		Get Snertn	Micro-turbulence (km s-1)	2				
		- Oct Op Cett	Plaxed spectrumy Normalized					
L I		11 11 Y	No overshooting/New ODF model applie	d: [2] FITS file: T03750G15P00V005K2SNWNVD01F.fit	s <u>2</u>			
			0.0		6.0			

U. Munari, R.Sordo, F.Castelli and T.Zwitter, "An extensive library of 2500-10500 1Å synthetic spectra", A&A (2005)

イロト 不得 とくほと くほとう

∃ 9900

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical Models not in VO

- It's difficult to **compare models** with each other and to compare them with observational data.
- It's difficult to develop tools that work with several different models.
- It's impossible to develop generic tools able to work with theoretical models **on-the-fly**.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical Models in VO

- Final aim: Full interoperability between observational and theoretical data.
- Efficiency
 - easier and faster to **compare models** with observations and with other models.
 - easier characterization
- Visibility
 - More people will have an **easier access** to the models.
 - The models will, eventually, be more used and referenced.

▲ @ ▶ | ▲ 三 ▶

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical models in VO?

VO protocols for observational data

- (ConeSearch, SIAP, SSAP,...)
- are built around coordinates and/or real objects.
 - http://.../ssap.jsp?POS=336.5228,-48.43854&SIZE=0.2

Not valid for theoretical models.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical models in VO?

• A theoretical model:

- Is not related with a real object or with spatial coordinates.
- Is defined by a set of parameters and the allowed values for each of them.
- Those parameters and values are not the same for different models.
- Even models describing similar physics are often characterized using different types of parameters.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is the VO? Theoretical Models not in VO Theoretical Models in the VO

Theoretical models in the VO

• TSAP

- A simple protocol.
- Dialog server-application.
- Started as a collaboration ESAVO-SVO.
- Included in the SSAP standard (for theoretical spectra)
- Easy to develop.
- Valid for other kind of data.

• SNAP.

- Complex protocol.
- designed for cosmological simulations.

< 回 > < 回 > .

- ⊒ →

Jsing TSAP sochrones /OSA: Science using TSAP/S3

TSAP: a working protocol

- Servers of theoretical models with TSAP
 - LAEFF, Pgos3(Mex), PEGASE, etc
- Applications accessing TSAP services
 - VOSpec
- Analysis tools
 - VOSed, VOSA
- Science with VO
 - SED analyzer for the case of Collinder 69 (Bayo et al 2008)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Using TSAP Isochrones VOSA: Science using TSAP/S3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TSAP Server (LAEFF)

Using TSAP Isochrones VOSA: Science using TSAP/S3

Using TSAP: VOSpec

イロン 不得 とくほ とくほ とうほ

Using TSAP Isochrones VOSA: Science using TSAP/S3

Isochrones

C. Rodrigo Blanco Theoret

Using TSAP Isochrones VOSA: Science using TSAP/S3

Science using TSAP/S3

VOSA: The VO Spectral Energy Distribution analyzer. The case of the young cluster Collinder 69 (Bayo et al, 2008)

- IRAC photometry for 167 candidate members of C69.
- VO archival data research (multi-wavelength range).
- Three different collections of theoretical models (with TSAP and S3).
- Determination of the best physical parameters for the objects and the association (T_{eff}, gravity, mass and age)
- A difficult task without using the VO.
- Much easier using VO tools.

イロト イポト イヨト イヨト

Using TSAP Isochrones VOSA: Science using TSAP/S3

VOSA: SED analysis using theoretical models

イロト 不得 とくほと くほとう

э

Using TSAP Isochrones VOSA: Science using TSAP/S3

VOSA: SED analysis using theoretical models

Using TSAP Isochrones VOSA: Science using TSAP/S3

VOSA: SED analysis using theoretical models

Using TSAP Isochrones VOSA: Science using TSAP/S3

VOSA: SED analysis using theoretical models

Using TSAP Isochrones VOSA: Science using TSAP/S3

VOSA: SED analysis using theoretical models

	Mod	els	Objects								
Plot	Mark All	Unmark All	Show	Show	All Sł	iow None					
1	NextGer	n t:0.00100		Obj	Mode	l teff	logL	t		m	
V	NextGer	n t:0.00125		LOri001	NextGer	n 4000	-0.0177	0.0030		1.1286	
	NextGer	n t:0.00158	•	LOri002	NextGer	n 3750	0.0145	0.0011	[1]	0.8990	
•	NextGer	n t:0.00199	1	LOri003	NextGer	n 4000	-0.0539	0.0032		1.1059	
	NextGer	n t:0.00251	•	LOri004	NextGer	n 3750	-0.0838	0.0017		0.8617	
	NextGer	n t:0.00316		LOri005	NextGer	4000	-0.0349	0.0031		1.1172	
	NextGer	n t:0.00398	•	LOri006	NextGer	n 4000	-0.1075	0.0040		1.0993	
	NextGer	n tr0 00501	I	LOri007	NextGer	n 4000	-0.1778	0.0050		1.0469	[1]
	NextGer	n t:0.00630		LOri008	NextGer	4000	-0.1202	0.0040		1.0977	
	NextGer	n tr0 00794	•	LOri009	NextGer	n 4000	-0.2374	0.0062		1.0500	
	NextGer	n tr0 00999		LOri010	NextGer	n 4250	-0.2329	0.0107		1.1506	
	NextGer	n tr0 01258	I	LOri011	NextGer	4000	-0.1286	0.0040		1.0962	
	NextGer	n t 0 01584		LOri012	NextGer	n 4000	-0.1998	0.0051		1.0569	
	NextGer	n tr0 01995		LOri013	NextGer	n 3750	-0.1932	0.0025		0.8476	
	NextGer	nt:0.02511	Z	LOri014	NextGer	n 4000	-0.2697	0.0064		1.0474	
	NextGer	a tr0 03162		LOri015	NextGer	4000	-0.2521	0.0063		1.0495	
	NextGer	a tr0 03981		LOri016	NextGer	n 3750	-0.2991	0.0035		0.8178	
	NextGer	at:0.05011	I	LOri017	NextGer	4250	-0.3374	0.0157	[1]	1.0536	
	NextGer	a tr0 06309	•	LOri018	NextGer	n 3750	-0.3085	0.0037		0.8153	
	NextGer	a tr0 07943	•	LOri019	NextGer	n 3750	-0.3322	0.0040		0.8102	
	NextGer	a t:0.10000	•	LOri020	NextGer	n 3500	-0.3274	0.0015		0.5389	
	NextGer	a t:0 12589	•	LOri021	NextGer	3750	-0.4030	0.0050		0.8011	
	NextGer	a tr0 15848	•	LOri022	NextGer	3750	-0.3697	0.0045		0.8044	
	NextGer	110.10040	•	LOri023	NextGer	n 3750	-0.4097	0.0050		0.8007	
	NextGer	nt:0.25118		LOri024	NextGer	3750	-0.3870	0.0049		0.8023	

HR Diagram

S3wizard

Building a VO server: S3wizard

- A wizard that helps you to build a VO service for a theoretical model
 - Only needs the ascii files containing the data corresponding to each model.
 - and user inputs about the meaning of parameters, data columns, curation, credits...
 - All by a web interface.)
- The application builds:
 - The database
 - A web page with forms to download files in ascci and votable formats.
 - A VO service able to answer the three types of queries

・ 同 ト ・ ヨ ト ・ ヨ ト ・

THANK YOU!

Introduction A working approach Building a VO server

C. Rodrigo Blanco Theoretical models in the VO

ヘロト 人間 とくほとくほとう