VOSA: A short introduction.

SEDs in the Virtual Observatory

Francisco Jiménez-Esteban

Enrique Solano, Carlos Rodrigo
Why SEDs (Spectral Energy Distributions)?
Why SEDs (Spectral Energy Distributions)?
Why SEDs (Spectral Energy Distributions)?
Building SEDs: Difficulties

- Discovery of information: Observational photometry and theoretical models.
Building SEDs: Difficulties

- Data Manipulation: From magnitudes to fluxes

VOSA Intro.
Building SEDs: Difficulties

- **Data Manipulation:** From theoretical spectra to synthetic photometry
Available since 2008.

> 1500 users.

> 4,700,000 objects.

> 100 refereed papers.
Accurate Empirical Radii and Masses of Planets and Their Host Stars with *Gaia* Parallaxes

Keivan G. Stassun1,2,iD Karen A. Collins1,2,iD and B. Scott Gaudi3,4

Published 2017 March 2 • © 2017. The American Astronomical Society. All rights reserved.

The Astronomical Journal, Volume 153, Number 3
Masses and radii of planets are necessary to:

- Shed light on inflated hot-Jupiters.
 - 0.2-2.1M\textsubscript{Jup}. Radii larger than predicted by models.
 - Internal heating.
 → Planet radius as a function of irradiation, age, magnetic fields, winds,...

\[\Delta F = \left(\frac{R_{\text{planet}}}{R_{\text{star}}} \right)^2 \]

\[M_p = \frac{K_{\text{RV}} \sqrt{1 - e^2}}{\sin i} \left(\frac{P}{2\pi G} \right)^{1/3} M_\star^{2/3} \]
Science case

- Empirical determination (model independent) of the radii and masses of stars hosting planets.
- SED fitting → F_{bol} and T_{eff}
- $L = 4\pi D^2 F_{bol}$ (D from Gaia-DR2 parallaxes)
- $R = \sqrt{L/(4\pi\sigma T_{eff}^4)}$
- $g = G \frac{M}{R^2}$