
CENTRO DE ASTROBIOLOGÍA

CSIC

- EXCELENCIA

Advanced VOSA Enrique Solano

Centro de Astrobiología (INTA-CSIC). Spanish Virtual Observatory, Madrid. Spain.

VOSA Input file


```
BD+292091
HD000693
HD001835
```

\#objname	RA	DEC	DIS	Av	Filter	Flux	Error	Pnt0pts	ObjOpts
\#======= BD+292091	===	====== -- -			2MASS/2MASS J	14724167946E-14	146014009		
BD +292091		-- -	- - -	-	2MASS/2MASS_H	3.69142119547E-14	2.3625095651E-16		
Obj2	18.1	-13.2	80	1.2	DENIS/DENIS ${ }^{-}$I	1.082924e-14	2.194453e-16	---	
Obj2	18.1	-13.2	80	1.2	2MASS/2MASS_J	2.483698e-17	2.287603e-19		
HD000693	2.81	-15.467	- - -	- - -	---	- - -	- - -		
HD001835	---	-- -	---	1.4	---	---	---	---	---
Obj3	19.5	23.2	80	1.2	Omega2000 Ks	2.121015e-16	1.953527e-19	---	---
Obj3	19.5	23.2	80	1.2	Spitzer/MĪPS_M1	$6.861148 \mathrm{e}-15$	1.390352e-16	---	---
HD003567	---	--	---		--- -	-- -	-- -	---	---

VOSA Input file

| \mid object | $\mid R A$ | DEC | dis | Av | filter | flux | error | pntopts | objopts |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mid \ldots$ | \ldots |
| $\mid \ldots$ | \ldots |$|$

```
TYC_5273-16-1 --- --- 52
TYC_9023-815-1
TYC_9083-198-1
TYC_9241-249-1
TYC_50_1383_1
```


The role of extinction

HD302505

The role of extinction

Object	RA	DEC	D (pc)	Model	A_{v}	ΔA_{v}	$\mathrm{T}_{\text {eff }}$	$\Delta \mathrm{T}_{\text {eff }}$	logg	$\Delta \mathrm{logg}$	Meta.	Δ Meta.
HD302505	151.33561042	-58.73908361	10	Kurucz	---	---	6250	125	4.00	0.25	-0.50	0.25

Basic data :

HD 302505 -- Star

Other object types:

* (HD, ALS, ...), I

ICRS coord. (ep=J2000) :
151.3356104-58.:

FK5 coord. (ep=J2000 eq=2000) : $100520.547-58$
FK4 coord. (ep=B1950 eq=1950) : 1003 39.75-58 :
Gal coord. (ep=J2000) :
282.7896-02.522:

Proper motions mas/yr:
Spectral type:
-6.6 3.6 [2.4 2.:

Fluxes (6) :
B2 1995A\&AS..1:
U 9.41 [~] D 200
B 9.90 [~] C ~
V 9.60 [~] C ~
J 8.537 [0.020]
H 8.438 [0.051]
K 8.349 [0.021]

The role of extinction

I: Av provided by the user

II: Av found in VO services

The main goal here is to set final values both for

- Av (that will be used to deredden the SED)
- the Av range (that, if set, will be used in the model fit as a free parameter).

In order to do this, among other options, this panel allows to query VO services in order to search for estimated extinction properties in the line of sight of the objects coordinates.

Take a look to the corresponding Help Section and Credits Page for more information. See a brief inline help about how using the form.

The role of extinction

First select what VO services you want to search for extinction properties.

The role of extinction

Add default user values

Here you can give "User" values for those objects where there is not a previous value defined. When you click the 'Add user values' button these values will be saved as user values (Final Av values will not be affected)

\square Only apply where there is not a previous user value Add user values

Which values do you trust better?

Here you can set the "Final" value of Av for all the objects at the same time. Depending on the choices that you make, the changes will be done for all the objects in the file when you click the Save values' button.

- Select values by ranking:

(Your first option will be chosen for every object if there is a value available. For those objects with no value in the first option, the second option will be chosen. And so on). (If you don't mark this, User values will be selecte first, then VO values in the same order that they are found, till a value for $A v$ can be built).
Select only $A v$ values in catalogues. Do not use $R v, E(B-V)$ to build a value for $A v$
Select $A v$ values first if available. Then, if not, $R v, E(B-V)$ values to build a value for $A v$
Select any combination of values that permits that a value for $A v$ can be built Save values

Combine final value/range for Av

The main goal here is to set "Final" values both to Av and the Av range.
If, for some objects, you have set a value for one of the variables but not both, you can use this form to go further.
Set the final $A v$ value based on the final $A v$ range (when the range is already set) $A v=$ Minimum $\bullet A v$ range
Set the final $A v$ range based on the $A v$ final value (when the value is set) Av range $\min =$ \qquad * Av

* Av

Av range max $=$
\square Apply even if there is a previous value

The role of extinction

Files	Objects	Build SEDs	Analyse SEDs	HR Diag.	Results	Help
Stars and brown dwarfs (Change)			File: RA:---, DEC:--- (info) (Change)			

Model fit
Best fit results
Click in the object name to see the best fits for that object.
Hide graphs Delete this fit Refine excess
Send table to SAMP Hub
Click here to configure what fields to show

Object	RA	DEC	D (pc)	Model	A_{v}	$\mathrm{T}_{\text {eff }}$	logg	Meta.	more	X^{2}	$\mathrm{M}_{\text {d }}$	$\mathrm{F}_{\text {obs }} / \mathrm{F}_{\text {tot }}$	$\mathrm{L}_{\text {bol }} \mathrm{L}_{\text {sun }}$	$\Delta \mathrm{L}_{\text {bol }} / \mathrm{l}_{\text {sun }}$	$\mathrm{N}_{\text {fit }} / \mathrm{N}_{\text {tot }}$	Data VOtables
HD302505	151.33559444	-58.73908202	10	Kurucz	2.32	28000	3.5	-1.5		$1.043 \mathrm{e}+0$	$1.223 \mathrm{e}-20$	0.06	$1.337 \mathrm{e}+0$	$2.753 \mathrm{e}-4$	13/16	Syn. Spec.

HD302505

-csic.es/theory/vosa/index.php?action=fitplus?êid=32079\&nobj=0\&what=showobj\&maxn=8qetespe=star\&fid=32079

The role of extinction

III: Av as a free parameter

HD302505 --- --- --- --- --- --- --- --- Av:0.0/3.0

Av / Teff degeneracy.

Reddening

 stellar photospheres) can be characterized by < 2.56".

Reddening: Refinement

$$
\begin{aligned}
& \frac{F_{o b s}-F_{\text {mod }}}{\Delta F_{o b s}}>3 \\
& \frac{F_{o b s}-F_{m o d}}{F_{m o d}}>0.2
\end{aligned}
$$

Reddening: Refinement

Model fit: Include upper limits

Files	Objects	Build SEDs	Analyse SEDs	HR Diag.	Results	Help

File: jplus-patch2_phot2 (info) (Change)
Test: Stars and brown dwarfs (Change)

Model Fit	Template fit	Model Bayes Analysis	Template Bayes Analysis

Model fit

GRAMS (Grid of Red supergiant and Asymptotic giant ModelS) is a grid of radiative transfer (RT) models for dust shells around red supergiant (RSG) and asymptotic giant branch (AGB) stars. This is the model grid for Carbon-rich stars
Note that no IR excess is considered when fitting with these models.
\square TLUSTY OSTAR2002+BSTAR2006
TLUSTY OSTAR2002+BSTAR2006 Grid, The merged files use the BSTAR2006 models for effective temperatures up to $30,000 \mathrm{~K}$ and the OSTAR2002 models for higher temperatures.

GRAMS (Grid of Red supergiant and Asymptotic giant ModeIS) is a grid of radiative transfer ($R T$) models for dust shells around red supergiant (RSG) and asymptotic giant branch (AGB) stars. This is the model grid for Oxygen-rich stars
Note that no IR excess is considered when fitting with these models.

Options for this fit

Include model spectrum in fit plots? (The fit process will be slower, because getting the spectra from the vo can take some time)Estimate fit parameter uncertainties using a statistical approach, performing a 100 iteration monte carlo simulation(The fit process will be slower)Use chi2 instead of the reduced chi2.
Do not use upper limits in the fit.
$\mathrm{Flx}=0$
$\Delta \mathrm{Flx}=\mathrm{F}_{\text {uplim }}$

- Then we assign a relative probability for each model as:

$$
W_{i}=\exp \left(-\chi_{i}^{2} / 2\right)
$$

- Using this, the probability corresponding to a given parameter value α_{j} is given by:

$$
P\left(\alpha_{j}\right)=\sum_{i} W_{i}
$$

where the sum is performed over all the models with that value for that parameter.

- We finally normalize these probabilities, for each parameter, dividing by the total probability (the sum of the probilities obtained for each value).

$$
P^{\prime}\left(\alpha_{j}\right)=\frac{P\left(\alpha_{j}\right)}{\sum_{i} P\left(\alpha_{i}\right)}
$$

$T_{\text {eff }}$

Statistics

Average	3363.54
Std. Dev (σ)	185.313
Mode	$3400 / 3500$
Median	3322.22
Skewness	0.0140213
Kurtosis	2.18994
$\mu 2$	34341
$\mu 3$	89229.3
$\mu 4$	$2.58261 e+9$
Q1	3162.5
Q2	3322.22
Q3	3455.56
$68 \% C L-M i n$	3108.5
$68 \% C L--M a x$	
96\%CL-Min	3505.82
96\%CL-Max	3000
Norm_min	3677
Norm_max	0.75

Value distribution

$T_{\text {eff }}$	$\Delta \mathrm{T}_{\text {eff }}$	min	max	prob
3000	50	2950	3050	0.03125
3100	50	3050	3150	0.114583
3200	50	3150	3250	0.166667
3300	50	3250	3350	0.145833
3400	50	3350	3450	0.1875
3500	50	3450	3550	0.1875
3600	50	3550	3650	0.114583
3700	50	3650	3750	0.0416667
3800	50	3750	3850	0.0104167

2HASSJ18163409-1246310
BT-Settl, Teff:3500, logs:5, Meta.:0, Av:0

Specphot

Your collections Upload new collection Help

Collection：bess．txt \rightarrow Spectrum：bess．txt \rightarrow（6）
This is the photometry calculated for this spectrum．
If you want to recalculate it for this spectrum and these or different filters，just Recalculate it．
Otherwise，you can also download these data as an ASCII file，a VOTable file，or generate a VOSA file with these dataPhotometry is rescaled so that： Flux $($ TYCHO $/$ TYCHO．V $)=0.000000000001113 \mathrm{erg} / \mathrm{cm} 2 / \mathrm{s} / \mathrm{A}$

Send table to SAMP Hub

Filter	λ	Flux
OSN／Comet50．CN	3861.09	$1.181880 \mathrm{e}-12$
OAJ／JPLUS．F0395＿filter	3946.00	$1.247897 \mathrm{e}-12$
CAHA／ALHAMBRA．F396W	3948.62	1．246946e－12
Scorpio／Comet．CN 3980	3985.47	$1.252321 \mathrm{e}-12$
OSN／Comet50．C3＿z1	4054.91	$1.429949 \mathrm{e}-12$
OSN／Comet50．C3＿z2	4076.89	1．322959e－12
CAHA／ALHAMBRA．F427W	4230.27	1．341522e－12
OSN／Comet25．CO	4310.95	1．217003e－12
Scorpio／Comet．CO	4332.22	$1.104631 \mathrm{e}-12$
Generic／Bessell．B	4360.00	1．299717e－12
GCPD／JHKLMN．B	4378.12	1．301704e－12
Generic／Johnson．B	4378.12	1．301704e－12
OSN／Comet50．Cont4430	4428.59	$1.380708 \mathrm{e}-12$
Scorpio／Comet．Cont＿4470	4476.24	$1.358791 \mathrm{e}-12$
CAHA／ALHAMBRA．F458W	4571.24	$1.342527 \mathrm{e}-12$
Misc／APASS．sdss＿g	4640.42	1．251096e－12
SLOAN／SDSS．g	4640.42	1．251096e－12
Generic／Stromgren．b	4663.26	1．307066e－12
ィ＾กıィ＾ก monan	1651 as	1 24フ170 12

HD142666

VOSA for galaxies

VOSA de galaxias

Dado que ha habido muchos interesados en un "VOSA para galaxias" pero que dicho tipo de herramientas tendría funcionalidades diferentes que para el caso de estrellas, os rogamos que rellenéis esta encuesta para poder definir y priorizar las funcionalidades de dicha herramienta. Te recordamos que, en primera instancia, VOSA trabaja con datos fotométricos para construir la SED (aunque internamente maneje espectros)

* Required
¿A qué distancia estarian las galaxias en las que estarias interesado? (a nivel de distancia) *Galaxia locales (el redshift no es relevante, y los ajustes se realizarían sobre todo el sistema)
Galaxia locales (el redshift no es relevante, pero los efectos de apertura pueden ser importantes ya que se aplicaría sobre partes de la galaxia, e.j. fotometría de apertura, porciones de imágenes etc..)Galaxias lejanas (el redshift SI es relevante pero las observaciones cubren todo el objeto)Los tres casos

¿Que clase de galaxias? *

Galaxias con lineas de emisión (con una contribución nebulosa que hay que considerar, como AGNs, starburst etc)[^0]
[^0]: Galaxias normales (sin contribución nebular: solo componente estelar)

